# 1. Sets, Relations, and Preferences

Key words:

  • Set Theory
  • Binary Relation
  • Group
  • Field
  • social choice

# 1.1 Elements of Set Theory

  • the Universal Set: U\mathcal{U}
  • intersection: ABA \cap B
  • union: ABA \cup B
  • null set/ empty set: Φ\Phi
  • negation/complement of A in U\mathcal{U}: U\A=Aˉ={x:x is in U but not in A}\mathcal{U} \backslash A = \bar { A } = \{ x : x \text { is in } \mathcal{U} \text { but not in } A \}
  • included in: ABA \subset B

# 1.1.1 A Set Theory

Let Γ\Gamma be a family of subsets of U\mathcal{U}.

 1. for any AΓ,AˉΓ, 2. for any A,B in Γ,AB is in Γ ,  3. for any A,B in Γ,AB is in Γ . \begin{array}{l}\text { 1. for any } A \in \Gamma, \bar{A} \in \Gamma, \\ \text { 2. for any } A, B \text { in } \Gamma, A \cup B \text { is in } \Gamma \text { , } \\ \text { 3. for any } A, B \text { in } \Gamma, A \cap B \text { is in } \Gamma \text { . }\end{array}

Then we say that Γ\Gamma satisfies closure with respect to (ˉ,,)( \bar{}, \cup , \cap ) , and we call Γ\Gamma a set theory.


Boolean algebra: a set theory that satisfies the following axioms


Propositional Calculus Associated with any set theory is a propositional calculus which satisfies properties analogous with a Boolean algebra, except that we use \wedge and \vee instead of the symbols \cap and \cup for “and” and “or”.

For example, A={x:x satisfies P(A)}A = \{ x : x \text { satisfies } P ( A ) \}

AB={x:"x satisfies P(A)"x satisfies P(B)"}AB={x:"x satisfies P(A)""x satisfies P(B)"}{ A \cup B = \{ x : " x \text { satisfies } P ( A ) " \vee ^ { \prime \prime } x \text { satisfies } P ( B ) " \} } \\ { A \cap B = \{ x : " x \text { satisfies } P ( A ) " \wedge " x \text { satisfies } P ( B ) " \} }

# 1.1.2 A Propositional Calculus 命题逻辑

Now extend the family of simple propositions to a family P\mathcal{P}, by including in P\mathcal{P} any propositional sentence S(P1,...,Pi,...)S(P_1 ,...,P_i ,...) which is made up of simple propositions combined under (ˉ,,)( \bar{}, \cup , \cap ). Then P satisfies closure with respect to (ˉ,,)( \bar{}, \cup , \cap ) and is called a propositional calculus.

  • Truth function TT

  • T:P{0,1}T : P \rightarrow \{ 0,1 \}

  • If T(S1)=T(S2)T(S_1)=T(S_2) for all truth values of the constituent simple propositions of the sentences S1S_1 and S2S_2, then S1=S2S_1 = S_2 (i.e., S1S_1 and S2S_2 are identical propositions).

  • Example:

T(P1)T(P2)T(P1P2)T(P2P1)0000011110111111\begin{array}{cccc}T\left(P_{1}\right) & T\left(P_{2}\right) & T\left(P_{1} \vee P_{2}\right) & T\left(P_{2} \vee P_{1}\right) \\ \hline 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}

Since T(P1P2)=T(P2P1)T (P_1 \vee P_2 ) = T (P_2 \vee P_1) for all truth values it must be the case that P1P2=P2P1P_1 \vee P_2 = P_2 \vee P_1.

If Γ=(U,Φ,A1,A2,)\Gamma = ( U , \Phi , A _ { 1 } , A _ { 2 } , \ldots ) is a set theory, then by exactly this procedure Γ\Gamma can be shown to be a Boolean algebra.

Suppose now that Γ\Gamma is a set theory with universal set U\mathcal{U}, and XX is a subset of U\mathcal{U}. Let ΓX=(X,Φ,A1X,A2X,...)Γ_X = (X,\Phi,A_1 \cap X,A_2 \cap X,...). Since Γ\Gamma is a set theory on U\mathcal{U}, ΓX\Gamma_X must be a set theory on XX, and thus there will exist a Boolean algebra in ΓX\Gamma_X.


Topology: a family Γ=(U,Φ,A1,A2,)\Gamma = ( U , \Phi , A _ { 1 } , A _ { 2 } , \ldots ) is a topology on U\mathcal{U} iff

  1. when A1,A2ΓA_1, A_2 \in \Gamma then A1A2ΓA_1 \cap A_2 \in \Gamma
  2. If AjΓA_{j} \in \Gamma for all jj belonging to some index set JJ (possibly infinite) then jJAjΓ\bigcup_{j \in J} A_{j} \in \Gamma
  3. Both U\mathcal{U} and Φ\Phi belong to Γ\Gamma

Axioms 1 and 2 may be interpreted as saying that Γ\Gamma is closed under finite intersection and (infinite) union.

# 1.1.3 Partitions and Covers 集合的划分与覆盖

  • cover for XX is a family Γ=(A1,A2,,Aj,)\Gamma = ( A _ { 1 } , A _ { 2 } , \ldots , A _ { j } , \ldots ) where jj belongs to an index set JJ (possibly infinite) such that

X={Aj:jJ}X=\cup \{A_j:j\in J\}

  • partition for X is a cover which is disjointdisjoint, i.e.. AjAk=ΦA_j\cap A_k=\Phi for any distinct j,kJj,k\in J

# 1.1.4 The Universal and Existential Quantifiers 普遍性与存在性

not[x s.t. x satisfies P][x:x does not satisfy P]not[x:x satisfies P][xs.t.x does not satisfy P]\left. \begin{array} { l } { \operatorname { not } [ \exists x \text { s.t. } x \text { satisfies } P ] \equiv [ \forall x : x \text { does not satisfy } P ] } \\ { \operatorname { not } [ \forall x : x \text { satisfies } P ] \equiv [ \exists x s . t . x \text { does not satisfy } P ] } \end{array} \right.

# 1.2 Relations, Functions and Operations

# 1.2.1 Relations 关系

  • Cartesian product set 笛卡尔积
    • X×YX \times Y is the set of ordered pairs (x,y)(x,y) such that xXx\in X and yYy\in Y.
    • If we let R\mathbb{R} be the set of real numbers, then R×R\mathbb{R}\times \mathbb{R} or R2\mathbb{R}^2 is the set

{(x,y):xR,yR}\{ ( x , y ) : x \in \mathbb{R} , y \in R \}

  • Relation
    • A subset of the Cartesian product Y×XY×X is called a relation, PP , on Y×XY×X. If (y,x)P(y,x) ∈ P then we sometimes write yPxyPx and say that yy stands in relation PP to xx. If it is not the case that (y,x)P(y,x) ∈ P then write (y,x)/P(y,x) ∈ / P or not(yPx)not (yPx). XX is called the domain of PP , and YY is called the target or codomain of PP .
    • If VV is a relation on Y×XY × X and WW is a relation on Z×YZ × Y, then define the relation WVW \circ V to be the relation on Z×XZ × X given by (z,x)WV(z,x) ∈ W \circ V iff for some yYy ∈ Y, (z,y)W(z,y) ∈ W and (y,x)V(y,x) ∈ V. The new relation WVW \circ V on Z×XZ \times X is called the composition of WW and VV.
  • Inverse of Relation P1P^{-1}
    • If PP is a relation on Y×XY \times X, its inverse is the relation on X×YX \times Y defined by

P1={(x,y)X×Y:(y,x)P}P ^ { - 1 } = \{ ( x , y ) \in X \times Y : ( y , x ) \in P \}